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Abstract. We study elicitation of beliefs that are related to choices in a dynamic
decision problem. We consider three cases with respect to the relationship between
actions and beliefs: (i) beliefs are independent of actions, (ii) actions affect infor-
mation but not the payoff-relevant state, and (iii) actions affect the distribution of
states. In each case, we provide necessary and sufficient conditions for incentivizing
truthful reports of beliefs without distorting behavior in the original decision prob-
lem. For two-period decision problems, questions asked in the first period can be
incentivized if and only if they are about expectations of payoffs plus some function
of the belief, where the class of functions that can be added varies across the three
cases. In contrast, incentivizing truthful reports in the second period always dis-
torts incentives in the first period unless the first-period action affects neither the
information nor the incentives in the second period.
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1. Introduction

In many experimental and empirical studies, researchers are interested in eliciting
subjects’ beliefs about the consequences of their actions. These beliefs may change
over time due to the arrival of new information or because actions affect the quality
of information or the distribution of some payoff-relevant state of the world. For
example, a researcher may want to compare a student’s expectation about their score
before and after taking a test. Alternatively, a researcher may want to evaluate
what the subject anticipates about the quality of information by asking about their
expected improvement in a prediction task.

We analyze a two-period model in which a decision-maker (DM) chooses an action
in each period, may receive new information between the two periods, and faces a
belief elicitation question that can depend on the actions chosen. We vary the model
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along two dimensions: whether the elicitation question takes place in the first period
or the second (i.e., before or after the arrival of new information), and how the first-
period action can affect the decision-maker’s belief about the state. In each case, we
identify the class of elicitation questions that are incentivizable, meaning that the
DM has strict incentives to answer the question truthfully and the optimal actions in
both periods are the same as in the problem without the elicitation question.

Our framework allows for a wide range of questions the researcher may ask. In
the first period, for example, the researcher may ask the DM how likely it is that his
choice in the second period will be a particular action. Alternatively, if the main task
involves a test in period two and the new information is the content of the test, the
researcher may ask the DM about his expected score on the test, or about how likely
he thinks it is that his prediction of his score after taking the test will be within some
fixed error band around his actual score. In the second period, the researcher may,
for example, ask questions about the DM’s expected payoff, or about how likely the
DM believes it is that his actions are optimal ex post.

To match a variety of decision problems, we consider three different cases with
respect to how the first-period action can affect the information the DM receives:

(1) The information is not affected by the first-period action. Applications include
the above examples where the main task is a test.

(2) The first-period action may affect the quality of information but not the dis-
tribution of states. Applications include information acquisition experiments
and bandit problems.

(3) The first-period action can affect both the quality of information and the dis-
tribution of states. Applications include dynamic investment and contracting
problems in which the first-period action can affect the success probabilities
associated with each second-period action, or dynamic games in which the
DM’s uncertainty is about actions played by the other player, which is, in
equilibrium, affected by the DM’s action choice.

The problem of nondistortionary belief elicitation was introduced in Pęski and
Stewart (2025) (henceforth PS). Here, we extend the definition to dynamic decision
problems. In our model, a DM (whom we sometimes refer to as the subject in
an experiment) takes actions over two periods, after which he receives payoffs that
depend on his choices together with an unknown state of the world θ. The DM enters
the problem with a privately known belief about the state of the world and about the
information he will receive between the two periods. The information the DM receives
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may affect his beliefs in the second stage in accordance with Bayesian updating. To
elicit some property of the DM’s beliefs, a researcher designs an elicitation mechanism.
The mechanism can ask the DM to report the expected value of some function of the
state, and can also ask the DM to make some additional choices. What the mechanism
asks for can depend on the actions chosen by the subject so far. The mechanism
rewards the DM according to the actions chosen in the decision problem, the report
and action choices in the elicitation mechanism, and the state of the world. The
mechanism is nondistortionary if the optimal choices in the original problem without
elicitation remain optimal in the combined problem with the elicitation mechanism.

The elicitation of dynamic beliefs with strict incentives for truth-telling has been
studied previously, most notably in Chambers and Lambert (2021). The previous lit-
erature focuses on elicitation problems in isolation, without a related decision problem
in which actions could be distorted. To understand the relevance of potential distor-
tions, consider the above example of a DM who is asked to predict his score before
taking a test. Rewards for a correct prediction could create an incentive to inten-
tionally underperform on the test to ensure the accuracy of the prediction. Such a
distortion may skew the results of the test and make their interpretation more diffi-
cult. In other settings, such as field experiments in health and education, distortions
could conflict with ethical principles or generate liability issues. Designing payments
for belief elicitation that do not distort the incentives in the original problem allows
the researcher to honestly tell the subject that he will maximize his expected pay-
ment by choosing the action he believes is optimal in the decision problem and then
reporting his belief truthfully.

Our results provide necessary and sufficient conditions for a question to be incen-
tivizable. For questions that satisfy our sufficient conditions, we provide a simple
construction of payments satisfying both of our incentivizability criteria. This con-
struction is based on the classic Becker-DeGroot-Marschak method.

If actions do not affect information, the incentivizability of questions in the first
period can be analyzed using the results from PS. A key difference is that the payoff-
relevant state—the second-period belief—is not observed. To deal with this compli-
cation, we allow for supporting actions that play the same role as the experimental
protocols studied in Chambers and Lambert (2021) (where the elicitation problem
faces the same issue). Our results explain how and when such protocols can be used
without distorting behavior in the first period.
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Action-independent
information

Actions may affect
the quality of information

Actions may affect
information

t = 1

expected payoffs
enhanced by arbitrary

function of beliefs
u∗1(a1, p) + f(p)

expected payoffs
enhanced by affine
function of beliefs
u∗1(a1, p) + l(p)

expected payoffs
u∗1(a1, p)

PS conditions nontrivial continuation
for almost all period 1 actions Always

t = 2

expected payoffs
if payoffs are separable;

action-independent affine
functions otherwise

nothing nothing

separable payoffs

Table 1. Results: Top row: sufficient conditions for incentivizability.
Bottom row: conditions when the sufficient conditions are also neces-
sary.

The analysis of two other cases differs substantively from the previous literature
and is a novel contribution of this paper. When the actions can affect the quality of
information, we show that information about expected payoffs enhanced with ques-
tions about the (true) payoff states can still be elicited. The latter are elicited by
asking the DM about the expected value of an affine function of beliefs. But, un-
like in the previous case, one cannot incentivize elicitation of general beliefs about
second-period information. For example, a question about the option value to stop
or continue the experiment at a fee cannot be incentivized without distorting the
incentives governing the first-period actions. Perhaps more surprising is the fact that
one cannot incentivize questions like “What is the probability that you will choose a2
as the second-period action?” unless this probability is either 0 or 1.

The necessary and sufficient conditions for incentivizability coincide when all (or
at least sufficiently many) first-period actions have a nontrivial continuation: the
second-period decision is not predetermined by the first-period action. In such a
case, a question is incentivizable if and only if it is a combination of expected payoffs
and an action-independent affine function.

When actions affect the distribution of states, the only incentivizable questions are
about expected payoffs.

The analysis of the incentivization of second-period questions is another original
contribution of this paper. Elicitation of such questions may distort incentives in
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both periods. In particular, the anticipated rewards from truthfully reporting second-
period information increase the value of information from the point of view of the
first-period decision making. If the first-period actions may affect the quality of
information, the increase in value of information may tip the balance towards more
informative actions. Even in the action-independent case, if the first-period actions
have a differential impact on the second-period value of information, then any second-
period elicitation will affect the first-period incentives. To demonstrate the latter, we
use an example with two first-period actions: safe, which ensures a state-independent
payoff, and risky, where the payoff depends on how informed the second-period choice
is. We show that in this example, the second-period question about expected payoffs
cannot be incentivized without distorting first-period incentives.

We use the interaction between the incentive constraints to show three results.
When information is action-independent and the payoffs in the original problem are
separable, i.e., they can be represented as a sum of two functions each of which
depends only on the action from one period, all incentivizable second-period questions
are equivalent to questions that depend only on the second-period action. (The
notion of equivalence means that there is another incentivizable question that does
not depend on the first-period action, and, using the observed actions, one can use
the second question to compute the value of the original question.) Under separable
payoffs and action-independent information, the first-period choice does not interact
with the second-period value of information, and if the question does not depend
nontrivially on the first-period choice, it can be appropriately incentivized.

In the opposite case, for generic payoffs, the first-period choice affects the second-
period incentives. We show that, in such a case, the only incentivizable questions are
equivalent to questions that are action-independent.

Finally, when the first-period actions may affect the quality of information or dis-
tribution of states, there are no incentivizable questions. In such a case, the increase
in the value of information due to incentivization will tip the balance towards actions
that generate more information.

See Table 1 for a summary of the results.

1.1. Related literature. Chambers and Lambert (2021) study belief elicitation in
dynamic environments, where a DM, privately, and subjectively, anticipate obtaining
new information. They develop a framework to design simple protocols and elicitation
mechanisms to induce the DM to reveal his beliefs, including anticipated information
flow. They prove that their protocols elicit essentially all information that can be
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elicited in an incentivized way. The key difference with our paper is that Chambers
and Lambert (2021) focuses on situations where information is independent of any
decisions, whereas we study situations where information is naturally used by the
agent in decision problems, including lab or field experiments, and/or the information
may itself be affected by the DM’s actions.

Tsakas (2020) shows that it is always possible to design a mechanism for elicit-
ing the prior belief of a DM who can acquire information at a cost (as in rational
inattention). In our framework, his problem is one in which the action—i.e., the
information acquisition choice—affects the quality of information but not the state,
and there is a unique optimal action in the original decision problem (not acquiring
any information).

PS analyzes nondistortionary elicitation in static problems. In that paper, we
provide sufficient conditions in simple, BDM-type mechanisms. We also provide nec-
essary conditions and show that, in three important classes of decision problems, the
necessary and sufficient conditions coincide. In those problems, our results fully char-
acterize all incentivizable questions: those are, up to equivalence and problem-specific
details, questions about expected payoffs enhanced with an action-independent ques-
tion about states.

The key difference with the current work is that here, the agent chooses actions
in two periods, and importantly, there is new information arriving between the two
periods. We consider different scenarios that vary the period in which the question is
asked and the effect of the first-period action on the information. When the informa-
tion is action-independent and the question is asked in the first period, the analysis
of the dynamic problem can be done using a combination of results from PS with
protocols from Chambers and Lambert (2021). In all other cases, the analysis goes
substantively beyond the past literature.

2. Examples

The following two examples are used throughout the text for illustration purposes.

2.1. Student. In a university class, a student’s final grade comes from a combination
of a score on a test and a current grade of h = 50% on homework assignments. The
weight on the test, which is either 1

3
or 2

3
, is chosen by the student before the test.

The test consists of a single multiple-choice question with at least three answers, of
which the student chooses one. Assume that the student’s test score is marked as 1
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if his answer is correct and 0 otherwise. The student’s payoff is proportional to the
final grade.

Here, the uncertainty is about which answer is correct. When the student sees
the test, he learns how likely he is to know the answer to the question. Thus the
uncertainty resolves in two stages. Importantly, the uncertainty is not affected by the
first-period action.

A researcher running an experiment wants to analyze the student’s beliefs, including
how much the student will learn from seeing the test. Here are some questions she
may ask:

(1) “What is your expected test score?”;
(2) “What final grade reduction would you accept for the ability to revise the

grading scheme after the test?”;
(3) “What would your expected final grade be if, when you choose the high test

weight, the marking scheme was reversed so that you get mark of 1 if your
chosen answer is incorrect and 0 otherwise?”

Questions (2) and (3) are asked before the test. Notice that the answers to questions
(2) and (3) depend on the grading scheme, i.e., the first-period action. Question (1)
can be asked before or after the test.

The researcher would like to incentivize the student to provide truthful answers.
The university research ethics board requires the researcher to ensure that the stu-
dent’s behavior in the class is not affected by the experiment.

We show that question (1) asked before or after the test and question (2) are
incentivizable without creating distortions. Question (3) is not incentivizable: any
attempt to incentivize elicitation of beliefs will distort the incentives in the first period.

2.2. Oncologist. In caring for a cancer patient, an oncologist makes two decisions:
the diagnostic approach and the treatment plan. The diagnostic choice is between a
liquid biopsy (a specialized blood analysis) and a tissue biopsy; the latter is more inva-
sive but provides more definitive information. Subsequently, based on the estimated
tumor burden, the oncologist chooses between chemotherapy and active surveillance,
which differ in their impact on the tumor count and the well-being of the patient.
The oncologist’s objective is to select the path that maximizes the patient’s Quality-
Adjusted Life Years (QALYs).

Here, the uncertainty is about the initial tumor burden. The choice of the first-
period action affects the quality of information but has no direct impact on QALY.
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A researcher analyzes how medical decisions are made. She wants to incentivize
elicitation of one of the following beliefs:

(1) “What is the expected QALY?” This question can be asked in either period
(i.e., alongside the diagnostic decision or the treatment decision).

(2) “How likely are you to prescribe chemotherapy?” This question can be asked
in the first period (alongside the diagnostic decision).

As in the previous example, the approval process for the experiment commits the
researcher not to distort medical decisions. This implies that the researcher must use
nondistortionary elicitation.

We show that question (1) asked alongside the diagnostic decision is incentivizable.
Neither question (1) asked alongside the treatment decision nor question (2) are
incentivizable. In particular, incentivizing the prediction of the treatment distorts
incentives governing the diagnostic decision.

3. Model

3.1. Decision problem. A single-period decision problem is a pair (A, u) of a set
of actions A and a payoff function u : Θ × A −→ R, where Θ is a fixed finite state
space. The decision-maker maximizes expected payoffs given beliefs p ∈ ∆Θ.

This paper focuses on dynamic decision problems, with two periods. An agent
participates in a dynamic experiment (A1, A2, u). In each period t, the agent chooses
an action at ∈ At. The payoffs u(a1, a2, θ) depend on the two actions as well as
an unknown state of the world θ ∈ Θ. The agent is a Bayesian expected utility
maximizer. If the action sets are clear from the context, we refer to the experiment
using its payoff function u. We assume that the sets of actions in the decision problem
u are finite. Below, we consider modifications of u that expand the set of actions to,
possibly, infinite sets.

The decision-maker receives information about the state of the world. We assume
that the information itself is not observable to the researcher. The information in
period 2 is defined as a belief, i.e., a probability distribution over the state space
p ∈ ∆Θ. Define the expected optimal payoffs following the choice of action a1 and
given belief p ∈ ∆Θ as

u∗1(a, p) = max
a2

Epu(a1, a2, θ).

The beliefs in period 1 are more complicated because the decision-maker anticipates
possibly receiving some information between the two periods. It is without loss to
describe the agent’s beliefs as a probability distribution over posterior beliefs, i.e.,
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as an element of ∆∆Θ. In general, the information may depend on the first-period
action. Thus, we define the information structure as a mapping µ ∈ U ⊆ (∆(∆Θ))A1 ,
where we interpret µa1 = µ(a1) as the anticipated information after taking action a1.
The set U contains all admissible information structures. We consider the following
three cases:

• action-independent information:

Uind = {µ ∈ (∆(∆Θ))A1 : µa1 = µb1 for all a1, b1 ∈ A1},

• actions affect the quality of information:

Uquality = {µ ∈ (∆(∆Θ))A1 : Eµ(a1)p = Eµ(b1)p for all a1, b1 ∈ A1},

• actions affect states:

Ugeneral = (∆(∆Θ))A1 .

The optimal decisions in experiment u are given by

Au
2(a1, p) = argmax

a2
Epu(a1, a2, θ),

Au
1(µ) = argmax

a1
Eµ(a1)u

∗
1(a1, p) = argmax

a1
Eµ(a1)

(
max
a2

Epu(a1, a2, θ)

)
where the expectation in the first line and the second expectation in the second line
are over the state θ and the first expectation in the second line is over p. For later
use, it is also convenient to define the inverse operators: for each a1 ∈ A1, a2 ∈ A2,

P u
1 (a1) = {µ ∈ U : a1 ∈ Au

1(µ)},

P u
2 (a1, a2) = {p ∈ ∆Θ : a2 ∈ Au

2(a1, p)}.

Sets P u
1 (a1) and P u

2 (a1, a2) are closed and convex.
Say that a2 is an essential best response following a1 if P u(a1, a2) has a nonempty

interior. Let
P(a1) = {P u(a1, a2) : a2 is essential b.r. after a1}

be the collection of closed subsets of beliefs P ⊆ ∆Θ induced by second-period es-
sential best responses after a1. Each collection P(a1) consists of closed convex sets;
their union is equal to the space of all beliefs and the intersection of any two of them
has empty interior. (The latter is a consequence of the fact that if there are two
actions a2, b2 and an open set of beliefs where a2, b2 are best responses following a1,
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then P (a1, a2) = P (a1, b2).) Slightly abusing language, we refer to P(a1) as the belief
partition after action a1.

In order to avoid breaking the second-period ties, some of our results are restricted
to beliefs for which there is always a unique best response no matter what the contin-
uation is. Let ∆u = {p : |Au(a1, p)| = 1} be the set of such beliefs. We assume that
∆u is a dense subset of all beliefs ∆Θ (this is an assumption on the decision problem
payoffs and, because the action sets are finite, it is generically satisfied). Let

Uu = {µ ∈ U : µa1({p : |Au(a1, p)| > 1}) = 0 ∀a1}.

3.2. Expansions. In order to elicit beliefs, a researcher designs an expanded version
of the original decision problem, with a larger space of actions. Formally, an expansion
of problem (A1, A2, u) is any decision problem (A1 × S1, A2 × S2, v). The expansion
is nondistortionary if

Au
1(µ) = {a1 : ∃s1 st. (a1, s1) ∈ Av

1(µ)} for each µ,

Au
2(a1, p) = {a2 : ∃s1, s2 st. (a2, s2) ∈ Av

2((a1, s1), p)} for each p and a1.

In a nondistortionary expansion, the optimal choices of the original experiment remain
optimal in the expansion.

We are interested in a special type of expansion called an elicitation mechanism.
In either period t = 1 or 2, the DM is asked to report the value of a random variable.
Additionally, the DM may be asked to choose other actions, with the idea that addi-
tional choices may help with elicitation. Formally, assume that St = R × S ′

t where S ′
t

and S ′
−t = S−t (where −t is the other period) are finite. The interpretation is that

the t-period action (at, r, st) in the elicitation mechanism consists of the action in the
original problem at, the elicitation report r, and the supporting action st.

If the elicitation mechanism does not have any supportive actions, i.e., the sets
S ′
t = {∗} are trivial, we say that the mechanism is simple.

3.3. Comments. We compare the model in this paper to the setting from PS. There,
we consider static decision problems (A, u). We study elicitation of affine properties
of beliefs, which correspond to the expected values EpX(a, θ) of action-dependent
random variables X : A×Θ −→ R. We refer to X as a question profile and X(a, ·) ∈
RΘ as a question. We say that X is incentivizable if there exists a simple (static)
nondistortionary expansion (A×R, v) such that, if (a, r) ∈ Av(p), then r = EpX(a, θ).

There are two main differences with respect to the current paper. First, the decision
problem is dynamic. The key difference is that beliefs may evolve between two periods,
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either because of the arrival of new information or the impact of actions on the
distribution of states. Without evolving beliefs, the two-period decision problem
would be equivalent to the static one and the question of incentivizability would
reduce to the one studied in PS.

We limit ourselves to two-period problems for simplicity. Similarly, we assume
that new information arrives only after the first period, and, in the case of actions
affecting the distribution of states, only the first-period (but not the second-period)
action affects the distribution. Extensions to more than two periods or additional
arrivals of information are straightforward and would generate analogous results.

Second, PS’s definition of incentivizability does not allow for any other actions in
the expansion apart from the report of the expected value of X. In contrast, we allow
for (finitely many) such actions in expansions of dynamic problems. In the second
period, such actions are crucial to elicit period 1 questions about dynamic beliefs,
including beliefs about learning (see Chambers and Lambert (2021), for example).
At the same time, we find that such actions in the first period do not expand the
set of incentivizable period 1 questions, and neither period 1 nor period 2 supportive
actions play any role in incentivizability in the second period.

As in PS, we assume that belief elicitation concerns a single one-dimensional ran-
dom variable. This assumption captures the idea that the DM has limits on his
cognitive load and capability to process and answer questions. It makes the model
cleaner. It is also straightforward to relax.

4. Elicitation in the first period

4.1. Questions. In this section, we study elicitations of properties of period 1 beliefs
µ. The researcher asks the subject to report an expected value of a random variable.
To accommodate a range of questions asked in practice, we allow the value of the
random variable to depend on the chosen action. Formally, a period 1 question profile
is defined as a mapping X : A1 ×∆Θ −→ R. For technical reasons, we assume that
X(a1, p) is continuous at beliefs p for which the second-period best response is unique,
i.e., p ∈ ∆u.

We say that X is incentivizable if there exists a nondistortionary elicitation mecha-
nism (A1×R×S1, A2×S2, v) such that, if (a1, r, s1) ∈ Av(µ), then r = Eµ(a1)X(a1, p)

for each µ ∈ Uu.
Consider the following examples.

Example 1. The questions from the example in Section 2.1 are formalized as follows:
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(1) “What is your expected test score?” corresponds to

X(1)(a1, p) = max
θ
p(θ),

which is an action-independent question
(2) “What final grade reduction would you accept for the ability to revise the

grading scheme after the test?” corresponds to

X(2)(a1, p) = max
a′1=

1
3
, 2
3

(
a′1max

θ
p(θ) + (1− a′1)h

)
−
(
a1max

θ
p(θ) + (1− a1)h

)
(3) “What would be your final grade if, when you choose the high test weight,

the marking was changed so that you get payoff 1 if your chosen answer is
incorrect and 0 otherwise (cross-out one incorrect)?” corresponds to

X(3)(a1, p) =

a1maxθ p(θ) + (1− a1)h a1 =
1
3

a1(1−minθ p(θ)) + (1− a1)h a1 =
2
3
.

Example 2. We formalize the example from Section 2.2. Let a1 ∈ A1 = {b, a},
a2 ∈ A2 = {c, s}, and θ ∈ [0, 1] be the tumor count. Assume that the survival rate
and QALY are equal to

s(a1, a2, θ) = 1− θ(1− κ(a2)),

q(a1, a2, θ) = s(a1, a2, θ)− ρ1(a1)− ρ2(a2),

Here, κ(a2) is the effectiveness of treatment a2, and ρ1 and ρ2 are the costs of the
diagnostics and the treatment, respectively.

(1) “What is the expected QALY?” corresponds to

X(1)(a1, p) = max
a2

Epq(a1, a2, θ) = Epq(a1, A
q(a1, p), θ),

(2) “What is the probability that you choose chemotherapy?”

X(2)(a1, p) = 1{c ∈ Au(a1, p)}.

As the above examples demonstrate, our definition of a question profile is quite
flexible and it accommodates a large number of practically applicable questions. Nev-
ertheless, it is important to note that the definition is restrictive. In order to describe
the limits of our definition, consider first a more fundamental problem of what prop-
erties X(µ) of probability distributions can be elicited in an incentivized way but
ignoring the issue of distortions or action-dependence. This problem has been stud-
ied in the literature (see Lambert, Pennock, and Shoham (2008) or Lambert (2019))
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and necessary and sufficient conditions for incentivizability have been identified. An
example of a necessary condition is that the level sets X−1(r) = {µ : X(µ) = r} must
be convex. 1 The convexity restriction eliminates a number of potentially interest-
ing distribution properties, like questions about variance or higher-moments are not
incentivizable.

In addition to convexity, our notion adds some additional restrictions. First, we
require the property X(µ) to be affine in µ, which is a stronger property. In the
case of action-dependent information, standard functional analytic results show that
our definition captures all continuous and affine properties, as such properties can
be represented as expected values of continuous random variables. For the other
two cases (actions affecting the quality of information and/or distribution of states),
an affine property takes the form X(µ) =

∑
aX

a(µa), where each Xa(µa) has a
representation as an expectation over a continuous variable.

At the same time, it is worth noting that we are not aware of any other potentially
interesting or relevant questions that satisfy our necessary conditions for incentiviz-
ability but are not captured by our definition.

The following simple observation is useful in characterizing incentivizability. We
say that two first-period questions X(a1, ·) and Y (a1, ·) are equivalent if there are
α ∈ R \ {0} and β ∈ R such that

Y (a1, p) = αX(a1, p) + β.

We say that two question profiles X and Y are equivalent if X(a1, ·) and Y (a1, ·) are
equivalent for all first-period actions a1. If X and Y are equivalent, then for each a1
the researcher can easily compute the answer to either question from the answer to
the other one. The (straightforward) proof of the following result can be found in
Appendix B.

Lemma 1. If question profile X is incentivizable, and Y is an equivalent profile, then
it is incentivizable as well.

4.2. Sufficient conditions. In this section, we discuss sufficient conditions for in-
centivizability.

The next result presents the sufficient conditions for incentivizability. Let L(Θ) =

R × RΘ be the set of affine functions on ∆Θ with the interpretation that, for each
l ∈ L(Θ), p ∈ ∆Θ, we have l(p) = l0 +

∑
θ l(θ)p(θ). For any finite set L0 ⊆ L(Θ),

1To see why, notice that if r is optimal report at µ and µ′, the value of information function must
be affine in-between the two profiles; see also Lemma 4 below.
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function fL(p) = maxl∈L0 l(p) is convex as a maximum over affine functions. We
refer to such functions as finitely convex to emphasize that they are constructed from
finitely many affine functions. We say that a function is finitely continuous if it can
be obtained as a difference between two finitely convex functions. Standard results
show that any continuous function can be approximated by a sequence of finitely
continuous functions.

Theorem 1. The following question profiles are incentivizable in the first period:
(1) X(a1, p) = γu∗1(a1, p) + f(p) for any finitely continuous f(p) and γ ∈ R if

information is action-independent, i.e., U = Uu
ind,

(2) X(a1, p) = γu∗1(a1, p) + l(p) for any affine l and γ ∈ R if actions affect the
quality of information, i.e., U = Uu

quality,
(3) X(a1, p) = u∗1(a1, p) if actions affect the distribution of states, i.e., U =

Uu
general.

The theorem says that questions about enhanced payoffs are incentivizable. The
scope of enhancement depends on the restriction on how the beliefs change with first-
period actions. In general, the more restrictive are the beliefs, the more permissive are
the sufficient conditions. When the information is independent of actions, any ques-
tion that is a sum of payoffs and a finitely continuous (action-independent) function
of beliefs (or is equivalent to one) is incentivizable.

Because γ can be equal to 0, the theorem shows that certain action-independent
questions are incentivizable (given Lemma 1, this is the only role of γ in the statement
of the theorem).

The proof constructs appropriate elicitation mechanisms. The construction has
two elements. The first element is the standard Becker-DeGroot-Marschak (BDM)
mechanism. Assume for simplicity that the value of the question is between 0 and 1 (if
not, we can replace the question by a normalized equivalent one). After learning the
subject’s report, r, of his expectation Eµ(a1)X(a1, p), the researcher draws a number
x uniformly from [0, 1]. If r > x, the subject receives a payoff equal to r, and, if
r < x, equal to X(a; p). (The payoffs can be easily binarized to avoid problems with
risk aversion; see Hossain and Okui (2013)), for example). Notice that we need to
explain how to pay X(a1, p) given that the second-period beliefs are not observed.
If X = u∗1, then the payoff is generated as in the original decision problem. If the
payoffs are additionally enhanced, the details differ in each case. For example, in
the case of action-independent information, suppose that X is enhanced with f(p) =
maxl∈L+ l(p)−maxl∈L− l(p) for some finite sets L+, L− ⊆ L(θ) of affine functions. We
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construct two parallel decision problems, where the DM chooses l ∈ L+ and l ∈ L−,
respectively and, in each problem, receives a payoff l0+ l(θ) from the realized state of
the world θ. We use the choices in the two problems to generate payoffs X(a1, p). The
weight of payoffs in the second problem is sufficiently high not to mess up incentives
with the negative component of X. Finally, in any case, the value of enhanced X is
maximized by choosing the same first-period action as the one that maximizes the
payoffs u∗1 from the original decision problem, as needed for incentivizability. The
details can be found in Appendix C.

The construction relies on the supporting action in the second period of the ex-
panded decision problem. The number of those actions, hence the added complexity,
depends on the enhancement function. Any question about payoffs, possibly enhanced
with an affine function (like in the case of actions affecting the quality of informa-
tion) can be incentivized with simple elicitation mechanisms without any supporting
actions.

Together with Lemma 1, the theorem describes a large class of incentivizable ques-
tions. Consider the following example.

Example 3. Question profiles X(1) and X(2) from Example 1 are incentivizable.
Indeed, X(1) = maxθ p(θ) is equivalent to u∗1(a1, p) = a1maxθ p(θ)+(1−a1)h. For each
a′1 and θ′, define affine functions l(a′1, θ′) ∈ L(Θ) so that l(p|a′1, θ′) = a′1p(θ

′)+(1−a′1)h.
Then, X(2) is equivalent to u∗1(a1, p)−maxa′1,θ′ l(p|a

′
1, θ

′).

4.3. Necessary conditions. Next, we describe some necessary conditions. Say that
two essential best responses a1, b1 ∈ A1 are adjacent if there is a belief µ ∈ U such
that Au(µ) = {a, b}: both actions are optimal in the first-period and there is no other
optimal action. As in PS, incentivizability imposes strong restrictions on the value of
questions for adjacent actions.

Lemma 2. Suppose that X is incentivizable in the first-period. Then, for any pair
of adjacent first-period actions a1, b1, there exist non-zero constants αa1 , αb1 ̸= 0, as
well as βa1 , βb1 , γ0, and a function f(p) such that, for all p ∈ ∆u,

αa1X(a1, p)− βa1 − γ0u∗1(a1, p) = αb1X(b1, p)− βb1 − γ0u∗1(b1, p) = f(p). (1)

Additionally,
• if actions may affect the quality of information, i.e., U = Uu

quality, then we can
assume that f is affine,

• if actions may affect the distribution of states, i.e., U = Uu
general, then we can

assume that f ≡ 0.
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The proof relies on the value of information argument (see Lemma 4 below; see
also PS) and a careful exploitation of the affine structure of the set of information
structures U . The larger is the space of information structures, the tighter are the
conditions. The details can be found in Appendix D.

If the original decision problem has two essential best responses, then the necessary
conditions of Lemma 2 are very close to the sufficient conditions of Theorem 1.

Otherwise, if there are more than two actions, there is a gap between the necessary
and sufficient conditions. We bridge this gap in the rest of this section. From now
on, we study each of the three cases separately.

Action-independent information. In the case of action-independent information, the
necessary conditions for incentivizability stated in Lemma 9 are equivalent to the
necessary conditions for a static decision problem (A1, u

∗
1) analyzed in PS. PS contains

three different sets of conditions for a decision problem under which the sufficient and
necessary conditions for incentivizability coincide.

It is worth pointing out two possible differences between PS and the problem con-
sidered here. First, PS assumes that the state space is finite, whereas here, the
relevant state space ∆Θ is infinite. Second, there is a gap between finitely continuous
functions in the sufficient conditions of Theorem 1 and arbitrary functions in Lemma
9. We leave the exploration of these two differences for future research.

Instead, we illustrate the limits to incentivizability using an example.

Example 4. Question profile X(3) from Example 1 is not incentivizable if |Θ| > 2.
Indeed, Lemma 9 implies the existence of constants α1, α2 ̸= 0 and β1, β2, γ such that,
for each p

α1min
θ
p(θ) + γmax

θ
p(θ) + β1 = (α2 + γ)max

θ
p(θ) + β2.

But that’s clearly impossible if there are more than two states.

Actions may affect the quality of information. Next, we assume that actions may
affect the quality of information, U = Uu

quality.
We start with a distinction that plays an important role in this case. Say that

the first-period action a1 has a nontrivial continuation if the belief partition P(a1)

contains at least two elements. In other words, an action has a nontrivial continuation
if there are at least two essential best responses following the first-period action.

We first consider decision problems where the second-period behavior is entirely
determined by the first-period choice.
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Corollary 1. Suppose that U = Uu
quality. Suppose that none of the first-period actions

has a nontrivial continuation. Then, if X is incentivizable, it is affine: X(a1, ·) ∈
L(Θ) for each a1.

Proof. If a1 has no nontrivial continuation, u∗1(a1, ·) is affine. Further, Lemma 9
implies that there exist constants α, β, γ and an affine function l such that

X(a1, p) = αu∗1(a1, p) + β + l(p).

Hence, X(a1, ·) is affine as the sum of affine functions. □

Affine questions can be used to ask about the distribution of states. However, they
cannot be used to elicit any dynamic beliefs, including beliefs about learning. The
Corollary says that if there are no nontrivial second-period continuations, and if the
first-period actions may affect the quality of information, it is not possible to elicit
dynamic beliefs without creating distortions.

Because actions do not affect the distribution of the states, in this case, the problem
of incentivizability is equivalent to the static problem studied in PS.

Next, we look at the opposite case where either all, or at least sufficiently many
first-period actions have a nontrivial continuation. We show that, in such a case, the
sufficient conditions of Theorem 1 are also essentially necessary in the sense that all
incentivizable questions are equivalent to a question about enhanced payoffs.

Let G∗ be the graph, where the nodes are first-period actions with nontrivial con-
tinuations, and any pair of two actions is connected if they are adjacent.

Theorem 2. Suppose that U = Uu
quality. Suppose that G∗ is connected and, either it

contains all first-period actions, or, for any action a1 without nontrivial continuation,
a1 is adjacent to some action with nontrivial continuation.

Then, question profile X is incentivizable if and only if it is equivalent to a question
profile

Y (a1, p) = γu∗1(a1, p) + l(p).

about expected payoffs enhanced with an affine function l ∈ L(Θ) for some γ ∈ R.

The proof of the theorem relies on the observation that, if an action a1 has nontrivial
continuation, then the expected payoffs u∗1(a1, ·) are not affine. In such a case, the
characterization from Lemma 9 implies that the question X(a1, ·) must be equivalent
to a question about enhanced payoffs. We have to make sure that the coefficients
of equivalence are properly preserved along the adjacency graph. The details of the
proof can be found in Appendix E.



NONDISTORTIONARY ELICITATION OF BELIEFS IN DYNAMIC PROBLEMS 18

Finally, we use an example to show that, in general, asking for the probability of
a nontrivial continuation is not incentivizable. This is a surprising observation given
that, in a static decision problem, asking about the probability of an action is trivially
incentivizable (such a question has a zero-one answer).

Example 5. Question profile X(2) from Example 2 is not incentivizable if both
treatments are essential best responses. Indeed, on the contrary, assume that both
chemotherapy and surveillance are uniquely chosen at some beliefs. If X(2) were in-
centivizable, then Lemma 9 would imply the existence of constants γ, β and affine l
such that

1{c ∈ Au(a1, p)} = γu∗1(a1, p) + l(p) + β.

However, while the right-hand side is continuous, the left-hand side is not. The
contradiction demonstrates that X(2) is not incentivizable.

Actions may affect the distribution of states. We turn to the last case, when actions
may affect the distribution of the states. An immediate corollary of Lemma 9 is that
the sufficient conditions of Theorem 1 are essentially necessary, in the sense that any
incentivizable question is equivalent to a question about payoffs.

Corollary 2. Suppose that U = Uu
general. Then, question X is incentivizable if and

only if it is equivalent to the question about expected payoffs u∗1(a1, p).

Proof. The result follows from the characterization in Lemma 9. □

5. Elicitation in the second period

In this section, we study elicitation of the properties of second-period beliefs p ∈
∆Θ. The main results are that nondistortionary elicitation is very limited. If in-
formation is action-independent, nontrivial elicitation can happen only if payoffs are
essentially separable. Otherwise, there are no incentivizable nontrivial questions.

5.1. Questions. As in Section 4, we focus on affine properties of beliefs. This means
that we ask the DM to report the expected value of an action-dependent random
variable. Formally, a second-period question is a mapping X : A1 × A2 × Θ −→ R.
We say that question X is incentivizable in period 2 if there is a nondistortionary
expansion (A1 × S1, A2 × R × S2, v) such that, for each a1, a2, s1, s2, if (a2, r, s2) ∈
Av

2(a1, s1, p), then r = EpX(a1, a2, θ).
Consider the following examples:
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Example 6. A second-period question about the expected final grade in the example
from Section 2.1 is given by

X(a1, a2, θ) = a11{a2 = θ}+ (1− a1)h.

As for their first-period analogues, we define equivalent questions:
Say that two second-period question profiles X, Y are equivalent if there are map-

pings α : A1 × A2 −→ R \ {0} and β : A1 × A2 −→ R such that, for each a1, a2,

Y (a1, a2, θ) = α(a1, a2)X(a1, a2, θ) + β(a1, a2).

If X and Y are equivalent, then the researcher can easily compute the answers to the
first one from the answers to the second one. The proof of the next result can be
found in Appendix F.

Lemma 3. If a question profile X is incentivizable and Y is an equivalent profile,
then Y is also incentivizable.

5.2. Sufficient conditions. We start with some definitions. Say that the decision
problem (A1, A2, u) has separable payoffs if there are functions ut : At×Θ −→ R such
that

u(a1, a2, θ) = u1(a1, θ) + u2(a2, θ).

We say that the payoffs are essentially separable if for any two essential best responses
in the first period a1, b1 ∈ A1, the continuation best responses in the second period
are identical: for each p,

Au(a1, p) = Au(b1, p).

In such a case, we ignore the first-period actions and write Au
2(p) to denote the set of

second-period best responses.
Finally, we say that payoffs are weakly separable if Pu(a1) does not depend on

the first-period action. Separability implies essential separability which implies weak
separability. If a decision problem is weakly separable, one can make it essentially
separable by relabeling actions.

The next result presents our strongest sufficient conditions. Say that a function
v : A2 −→ R is weakly aligned with the second-period payoffs if (A2, v) is a single-
period decision problem such that Av(p) = Au

2(p). Note that if v is weakly aligned
then so is v + d for any (action-independent) function d : Θ −→ R.
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Theorem 3. Suppose that the information is action-independent, i.e., U = Uind. If
the payoffs are essentially separable, and v is weakly aligned with the second-period
payoffs, then X(a1, a2, θ) = v(a2, θ) (or any equivalent question) is incentivizable.

The Theorem shows that a question about the expected value of a function that
weakly aligned with the second period payoffs is incentivizable. Observe that all such
questions depend only on the second-period actions.

The proof is standard and relies on the BDM. The details can be found in Section
G.

If payoffs are essentially separable, then an example of a question that satisfies
the assumptions of the theorem is a question about expected payoffs as if the DM
chooses a fixed action a∗1 in the first period: X(a1, a2, θ) = u(a∗1, a2, θ).

Example 7. Consider the example from Section 2.1. Notice that the optimal answer
in the test a2 does not depend on the weight that the final grade puts on the test.
Moreover, the optimal answer maximizes EpX

(1)(a2, θ) = Probp(a2 = θ). Hence, the
decision problem is essentially separable. As a result, the question Y (a1, a2, θ) =

1{a2 = θ} is incentivizable.
Because the question X from Example 6 is equivalent to Y , it is also incentivizable.

5.3. Necessary conditions: case U = Uind. Assume that information is action-
independent. We present two sets of necessary conditions for incentivizability. The
conditions apply to two different classes of problems: with separable payoffs and the
opposite extreme case, when payoffs are generic.

Theorem 4. Suppose the decision problem has essentially separable payoffs and X

is incentivizable in the second period. Then, X is equivalent to a question profile that
depends only on the second-period actions.

The theorem shows that, with essentially separable payoffs, questions that only
depend on the second-period action can be incentivizable. That includes questions
about weakly aligned functions, but, in general, other functions as well. That leaves
a gap between the sufficient conditions from Theorem 3 and the above necessary
conditions.

The proof of the theorem only uses the first-period restrictions on incentivizability.
Additional information can be gained from looking at the second-period restrictions.
In the second period, the necessary conditions for incentivizability have been analyzed
in PS. That paper contains three different sets of conditions for the second-period
decision problem under which the necessary and sufficient conditions coincide.
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For each first-period action a1, let

D(a1) = {u(a1, a2, ·)− u(a1, b2, ·) : a2, b2 ∈ A2 st. a2 ̸= b2} ⊆ RΘ

be a finite set of payoff difference vectors after choosing the first-period action a1. Say
that payoffs are generic if sets D(a1) and D(a2) are disjoint for any pair of essential
best responses a1, b1. It is easy to see that the set of so-defined generic payoffs is an
open and dense subset of RA1×A2×Θ, which justifies the name. On the other hand, if
payoffs are separable, sets D(a1) are identical for all first-period actions, hence payoffs
are very much not generic.

Theorem 5. For generic payoffs u, if X is incentivizable in the second-period, then
X is equivalent to an action-independent question.

For all such decision problems, a question is incentivizable in the second period if
and only if it is action-independent. Because such questions are trivially incentiviz-
able in the second-period, for such problems the necessary and sufficient conditions
coincide.

5.4. Proof intuition for Theorems 4 and 5. We explain the logic of the proof of
the theorem. The details can be found in Appendix H.2.

We start with a reminder of two basic facts about the value of information function
u∗1(a1, ·). This function is convex. Moreover, it is strictly convex over the interval of
beliefs αp+ (1− α)q if and only if there is no single common best response at p and
q, i.e., if and only if Au(a1, p) ∩ Au(a1, q) = ∅ (see Lemma 4 in the Appendix).

Consider the following example to show how the above observation imposes restric-
tions on incentivizable questions.

Example 8. There are two states Θ = {0, 1}. In period 1, the agent chooses between
save and risky options A1 = {s, r}. In the second period, the agent chooses between
actions in A2 = {0, 1}. If the risky option is chosen, then the agent gets payoff 1 if
the second-period action matches the state, and −2 otherwise. If the safe option is
chosen in the first period, the agent receives payoff 0 if action 0 is taken in the second
period and payoff −1 otherwise. In particular, there is a single optimal decision after
action s, and the expected payoffs are constant and equal to u∗1(s, p) = 0 for each p.
The expected payoffs after risky action

u∗1(r, p) = max{1− 3p, 3p− 2} (2)

are convex at p = 1
2

and affine otherwise.
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Suppose that X(a1, a2, θ) = u(a1, a2, θ) is a question about payoffs. We show that
this question is not incentivizable in period 2.

For simplicity, we only consider simple nondistortionary elicitation mechanisms
(A1, A2 × R, v). On the contrary, suppose that v incentivizes X. Let v∗1(a1, p) =

maxa2,r Epv(a1, a2, r, θ) be the value of information of the second-period decision prob-
lem.

Because there is a single optimal decision (a2, r) = (0, 0) after action s, it must be
that v∗1(s, p) is affine in p. At the same time, because the expected payoffs vary with
p (see equation (2)), there is a different optimal decision at each p. Hence, v∗1(r, p) is
strictly convex at each belief p. In particular, v∗1(r, p) − v∗1(s, p) is strictly convex at
each p.

As the expansion is nondistortionary, the first-period decision problems with payoffs
u∗1(a1, p) and v∗1(a1, p) must have the same optimal actions. This implies that the
expected payoff differences between save and risky actions must be collinear (see
Lemma 5 in the Appendix). But, in the original decision problem, the difference
payoff vector

u∗1(r, p)− u∗1(s, p) = u∗1(r, p) = max{1− 3p, 3p− 2}

is affine in p ∈ (0, 1
2
). We obtain a contradiction with strict convexity of v∗1(r, p) −

v∗1(s, p) at each p.
The contradiction shows that the question about payoffs cannot be incentivized in

a nondistortionary way.

The key feature of the above example is that there are pairs of beliefs such that
the value of the question (i.e., the payoffs, in the example) for the optimal second-
period action is the same at the two beliefs after one first-period action, but not after
some other adjacent first-period action. If so, a similar argument shows that any
attempt to incentivize second-period elicitation will distort first-period incentives.
Using a simple linear algebra argument, we further show that if the question profile
X is incentivizable, a1 and b1 are two adjacent actions, and a2 and b2 are respective
continuation best responses at the same nonempty set of beliefs (i.e., P (a1, a2) ∩
P (b1, b2) ̸= ∅), then the questions X(a1, a2) and X(b1, b2) must be equivalent.

We now further illustrate how this argument works. Consider Figure 1, which
shows the space of beliefs ∆Θ divided into sets of beliefs where actions a2 or b2 are
continuation best responses after action a1 (red, higher rectangles) and after action
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b1 (blue, lower rectangles). The belief sets overlap, as in the generic payoff case of
Theorem 5.

b1, a2 b1, b2

a1, a2 a1, b2

Figure 1. Belief sets P (x1, x2) for x1 ∈ {a1, b1} and x2 ∈ {a2, b2}.

If the question profile X is incentivizable, then the overlap of the belief sets in the
center of the Figure implies that questions X(a1, a2) and X(b1, b2) must be equivalent.
Further, the same argument implies that pairs of questions X(a1, b2) and X(b1, b2)

as well as X(a1, a2) and X(b1, a2) are equivalent as well. Because “equivalence” is an
equivalence relation, it must be that all the questions are equivalent to, say, X(b1, b2).
In other words, in this case, X is equivalent to an action-independent question.

More generally, consider the belief partitions P(a1) and define P as the join of the
belief partitions P(a1) across all first-period essential best responses: P is the finest
collection of closed convex sets with nonempty interior such that, for each essential
a1, each P ∈ P(a1), P is contained in one of the elements of P . For each a1, each
essential a2, let π(a1, a2) ∈ P be the uniquely defined element of collection P that
contains P (a1, a2). For example, in the case illustrated on Figure 1, the join is trivial:
it consists of a single element encompassing all beliefs.

We show in the Appendix that any incentivizable question profile X is equivalent
to a question that only depends on the elements of the join of the partition. In the
generic case, we show that the join is trivial. As a conclusion, we obtain the thesis of
Theorem 5.

On the other hand, if payoffs are essentially separable, the join is equal to the
collection P(a1) for any essential best response. As a result, we obtain the thesis of
Theorem 4: any incentivizable question is equivalent to a question that depends only
on the elements of the join, hence, only on the second-period actions.

5.5. Necessary conditions: other cases. Here, we show that if actions either
affect the quality of information, U = Uquality, or the distribution of states, U =

Ugeneral, then no nontrivial question is incentivizable. More precisely, we will show that
there is no nondistortionary expansion in which nontrivial second-period questions are
elicited. We say that a question is nontrivial if it is not equivalent to a constant. More
precisely, say that X : A1×A2×Θ −→ R is a nontrivial question if there are essential
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best responses a1 and a2 (after a1) such that the question is not constant in the state
of the world: there are states θ ̸= θ′ such that X(a1, a2, θ) ̸= X(a1, a2, θ

′).

Theorem 6. Suppose Uquality ⊆ U . There is no non nontrivial question profile that
is incentivizable in the second period.

The theorem says that we cannot incentivize any question, whether it is action-
dependent or not. The proof is in Appendix I.

To get the intuition for the result, notice first that, due to the convexity of the value
of information function, any incentivization must increase the value of information
in the first period relative to the original problem. If actions affect the quality of
information, this increase distorts the incentives toward more informative actions.

Appendix A. Static decision problems

In the following discussion, we rely on the following two facts about static decision
problems: Let A, u where u : A × Θ be an arbitrary (static) decision problem. Let
Au(p) = argmaxa Epu(a, θ) be the optimal set and let V (p) = maxa Eu(a, θ) be the
value of information function. Then, the value of information is affine between beliefs
for which there is a common optimal action and strictly convex otherwise.

Lemma 4. For any two beliefs p, q,

Au(p) ∩ Au(q) = ∅ =⇒ ∀α∈(0,1)V (αp+ (1− α)q) < αV (p) + (1− α)V (q),

Au(p) ∩ Au(q) ̸= ∅ =⇒ ∀α∈(0,1)V (αp+ (1− α)q) = αV (p) + (1− α)V (q).

Say that actions a1, b1 are adjacent if there is an interior belief µ ∈ ∆(∆Θ) such
that the two actions are uniquely optimal: Au

1(µ) = {a1, b1}.
For the second fact, suppose that (A, v) is a decision problem with the same optimal

action sets Au(.) = Av(.) (i.e., a trivial nondistortionary expansion of u. Then, at
least for adjacent actions (i.e., actions such that the two actions are uniquely optimal
for some belief), the payoff difference vectors must be collinear:

Lemma 5. Suppose that decision problems u and v have the same optimal action sets
Au(.) = Av(.). If a, b are adjacent in decision problem u, then, there exists c > 0 st.

u(a, θ)− u(b, θ) = c (v(a, θ)− v(b, θ)) for each θ.

The two facts are straightforward and well-known (see also PS).
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Appendix B. Proof of Lemma 1

Suppose Y is equivalent to X and α(a1), β(a1) are the parameters from the def-
inition of equivalence. Suppose that (A1 × R × S1, A2 × S2, vX) is the elicitation
mechanism incentivizing X. Let

vY (a1, r, s1, a2, s2) = vX(a1,
r − β(a1)

α(a1)
, s1, a2, s2).

Then, (A1×R×S1, A2×S2, vY ) incentivizes Y . Indeed, the construction ensures that
• (a2, s2) ∈ AvY (a1, r, s1, p) is vY -optimal in the second period after actions
a1, r, s1 at beliefs p if and only if (a2, s2) ∈ AvX (a1,

r−β(a1)
α(a1)

, s1, p) is vX-optimal
after (a1,

r−β(a1)
α(a1)

, s1, p).
• The expected continuation payoffs after the first-period in vY problem after ac-

tions (a1, r, s1) are identical to the payoffs in vX problem after (a1, r−β(a1)
α(a1)

, s1),
the incentives in the first-period are unchanged. Together with the fact that X
is incentivized in the first-period, the latter implies that r = α(a1)Eµ(a1)X(a1, ·)+
β(a1) is vY -optimal.

Appendix C. Proof of Theorem 1

We start with the case of action-independent information. Suppose that X(a1, p) =

γu∗1(a1, p) + f(p), where f is a finitely continuous function and γ ∈ R. Because of
equivalence, we can assume hat γ ≥ 0. By the definition of finitely continuous
functions, there exist finite sets L+, L− ⊆ L(∆Θ) such that

f(p) = max
l∈L+

l(p)−max
l∈L−

l(p).

Assume that xmin < X(a1, p) < xmax for each a1, p.
Construct an elicitation mechanism (A1 × R, A2 × L+ × L−, v) with payoffs:

v(a1, r, a2, l+, l−, θ)

=u(a1, a2, θ) +
r − xmin

xmax − xmin
(u(a1, a2, θ) + l+(θ)− l−(θ)) +

1

2

x2max − r2

xmax − xmin
+ 2l−(θ).

(3)

Given beliefs p, the first-period actions a1, r, and the optimal choice of second-period
actions leads to expected payoffs equal to

u∗1(a1, p) +
r − xmin

xmax − xmin
Eµ(a1)X(a1, p) +

1

2

x2max − r2

xmax − xmin
+ 2Epmax

l∈L−
l(p).
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(Notice that the incentives to maximize the l(p) for l ∈ L− are due to the fact that the
coefficient on such ls is strictly positive.) The optimal choice is ropt = Eµ(a1)X(a1, p).
This leads to expected payoffs given action a1:

u∗1(a1, p) +
1

xmax − xmin
(Eµ(a1)X(a1, p)− xmin)

2 +
1

2
(xmax + xmin) + 2Ep max

l∈L−
l(p).

(4)

The expected payoff is increasing in

EµX(a1, p) = γEµu
∗
1(a1, p) + Eµf(p).

Because the last component of (4) does not depend on a1, the expected payoffs are
maximized by a1 ∈ Au(µ). This concludes the proof in the case of action-independent
information.

Suppose that actions affect the quality of information and assume that X(a1, p) =

u∗1(a1, p)+ l(p) for some affine l. Notice that Eµ(a1)l(p) does not depend on the action
for any a1. In such a case, the same elicitation mechanism, but with l+ replaced
by l in formula (3), and no supporting actions is the appropriate nondistortionary
expansion. Finally, the same mechanism, but with l ≡ 0 works for the general case.

Appendix D. Proof of Lemma 2

Suppose that question profile X is incentivizable in the first period and actions a, b
are adjacent.

D.1. Basic observation. We start with a straightforward consequence of Lemma 4:

Lemma 6. For any µ ∈ Uu such that Au(µ) = {a, b}, any ψ ∈ U , if ψa · u(a, ·) =
ψb · u(b, ·) and µa ·X(a, ·) = ψa ·X(a, ·), then µb ·X(b, ·) = ψb ·X(b, ·).

Proof. Suppose that (A1 ×R×S1, A2 ×S2, v) is an elicitation mechanism that incen-
tivizes X. For each α, define µα = αµ+ (1− α)ψ.

Because Au(µ) = {a, b}, there is 0 < α0 < α1 < 1 and s1 ∈ S1 such that, for each
α ∈ [α0, α1], we have

Au(µα) = {a, b} and (a, µ ·X(a, ·), s1) ∈ Av(µα).

Indeed, the first claim follows from the upper hemi-continuity of the best response
correspondence. The second claim is a consequence of the first, the assumption that
µa ·X(a, ·) = ψa ·X(a, ·), and the finiteness of S1.
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Together with the definition of elicitation mechanism, Lemma 4 implies that there
must be some r and t1 ∈ S1 such that (b, r, t1) ∈ Av(µα). Because of the definition
of incentivizability, it must be that r = µα(b) · X(b, ·) for each α ∈ [α0, α1], which
implies µb ·X(b, ·) = ψb ·X(b, ·). □

In what follows, we say that function f : ∆u −→ R is an affine transformation of
g : ∆u −→ R, if there are constants ρ, δ ∈ R such that f(p) = ρg(p) + δ.

Define function
D(p) = u∗1(a, p)− u∗1(b, p).

D.2. Case Uind. We start with preliminary result:

Lemma 7. Fix finite subset P ⊆ ∆Θ. Then, there exist P -dependent constant
α, γ, β ∈ R such that, for each p ∈ P ,

αX(a, p) +X(b, p) = γD(p) + β.

Proof. For each finite subset P ⊆ ∆Θ, define UP = {µ ∈ U : µ(P ) = 1 for each a ∈
A1}. Let µ ∈ UP be an interior information structure such that Au(µ) = {a, b}. Let
W be the (convex) set of information structures ψ such that

ψ · u(a, ·) = ψ · u(b, ·) and µ ·X(a, ·) = ψ ·X(a, ·).

Lemma 6 implies that

µ ·X(b, ·) = ψ ·X(b, ·) for any ψ ∈ W .

Let F = {D, 1} and consider a (dual) linear subspace

W = {w ∈
(
RP : ∀f∈F∪{X(a,·)}w · f = 0

}
.

Then, W is the affine hull of the set {ψ−µ : ψ ∈ W}. The above observation implies
that, for each w ∈ W , it must be that w · X(b, ·) = 0. A standard linear algebra
argument implies that X(b, ·) ∈ span(F ∪ {X(a, ·)}). The thesis of the Lemma
follows.

□

Note that the constants in equations (5) are typically not uniquely defined and may
depend on the choice of set P .

The rest of the proof proceeds in smaller steps. Define function

D(p) = u∗1(a, p)− u∗1(b, p).
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Lemma 8. X(a, ·) is an affine transformation of D iff X(b, ·) is an affine transfor-
mation of D.

Proof. Suppose x(a, ·), but not X(b, ·) is an affine transformation of D. Then, there is
P∆u such that X(b, ·) cannot be represented by affine transformation of D on P . But
this leads to a contradiction with Lemma 7. The other direction follows by switching
the roles of a and b. □

The Lemma shows that the following cases are exhaustive:
(1) X(a, ·) and X(b, ·) are not affine transformations of D: For sufficiently large

P , neither X(a, ·) nor X(b, ·) can be represented as a affine transformation
of D on P . The hypothesis implies that, if α is the constant from Lemma 7,
then α ̸= 0.

We will show that α is unique. Otherwise, there would be α′, γ′, β′ such
that

α′X(a, p) +X(b, p) = γ′D(p) + β′.

But then, a subtraction of the first equation from the second leads to a con-
tradiction with X(a, ·) not having a representation as affine transformation of
D.

Additionally, because D(p) is not constant, γ and β are also uniquely de-
termined for all sufficiently large P . Hence, for all p ∈ ∆u

αX(a, p)− βa − γu(a, p) = −X(b, p)− γu(b, p),

which implies the thesis of Lemma 2.
(2) For each x = a, b, X(x, ·) is affine transformations of D with coefficients ρx, δx.

The Lemma 2 follows from

−X(a, ·) + δa + (ρb + ρa)u(a, ·) = ρbu(a, ·) + ρau(b, ·) = X(b, ·)− δb + (ρb + ρa)u(b, ·).

D.3. Case Uquality. We start with preliminary result:

Lemma 9. Fix finite subset P ⊆ ∆Θ. Then, there exist P -dependent constant
α, γ, βa ∈ R and affine function l ∈ L(Θ) such that, for each p ∈ P ,

αX(a, p) = βa + γu(a, p) + l(p), (5)

X(b, p) = −γu(b, p)− l(p).

Proof. For each finite subset P ⊆ ∆Θ, define UP = {µ ∈ U : µa(P ) = 1 for each a ∈
A1}. Let µ ∈ UP be an interior information structure such that Au(µ) = {a, b}. Let
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W be the (convex) set of information structures ψ such that

ψa · u(a, ·) = ψb · u(b, ·) and µa ·X(a, ·) = ψa ·X(a, ·).

Lemma 6 implies that

µb ·X(b, ·) = ψb ·X(b, ·) for any ψ ∈ W .

For all actions x, y ∈ A, let

g(x, p) = 1{x = a}u(a, p)− 1{x = b}u(b, p),

gy,θ(x, p) = p(θ)(1{x = y} − 1{x = a}) for all θ ∈ Θ and y ∈ A1 \ {a},

hy(x, p) = 1{x = y},

ky(x, p) = 1{x = y}X(y, p).

Define F = {g} ∪ {gy,θ : y ̸= a, θ ∈ Θ} ∪ {hy : y ∈ A} and consider a (dual) linear
subspace

W =

{
w ∈

(
RP

)A
: ∀f∈F∪{ka}

∑
x

wx · fx = 0

}
.

Then, W is the affine hull of the set {ψ − µ : ψ ∈ W}.
The above observation implies that, for each w ∈ W , it must be that

∑
xwx ·kbx = 0.

A standard linear algebra argument implies that kb ∈ span(F ∪ {ka}): there exist
constants γb,γab , β

y
b , for each y ∈ A1, and γy,θb for θ and y ̸= a such that

kb =
∑
y

βy
bh

y + γbg +
∑

θ and y ̸=a

γy,θb gy,θ + γab k
a.

We rewrite it as

0 = βa
b + γbu(a, p)−

∑
θ

γθ,bb p(θ)−
∑

θ and y ̸=a,b

γθ,yb p(θ) + γabX(a, p),

X(b, p) = βb
b − γbu(b, p) +

∑
θ

γθ,bb p(θ),

0 = βy
b +

∑
θ

γθ,yb p(θ) for each y ̸= a, b.

Let l(p) = βy
b −

∑
θ γ

θ,b
b p(θ) and rename other constants appropriately. The lemma

follows.
□

Note that the constants in equations (5) are typically not uniquely defined and may
depend on the choice of set P .



NONDISTORTIONARY ELICITATION OF BELIEFS IN DYNAMIC PROBLEMS 30

The rest of the proof proceeds in smaller steps.

Lemma 10. X(a, ·) is an affine transformation of D iff X(b, ·) is an affine transfor-
mation of D.

Proof. Suppose x(a, ·), but not X(b, ·) is an affine transformation of D. Then, there
is P∆u such that X(b, ·) cannot be represented by affine transformation of D on P .
At the same time, the summation of equations (5) leads to

αX(a, p) +X(b, p) = γD(p) + βa.

The contradiction shows that X(b, ·) is an affine transformation of D.
The other direction follows by switching the roles of a and b. □

Lemma 11. Suppose that, for each x = a, b, X(x, ·) = ρxD(p) + δx for some coeffi-
cients ρx, δx. Then, either ρau(b, ·) and ρbu(a, ·) are both affine, or both of them are
not affine.

Proof. Suppose that ρbu(a, ·) is not affine. Then u(a, ·) must be not affine and there
is P ⊆ ∆u sufficiently large so that u(a, ·) is not affine on P . Also, we assume that
P is sufficiently large that D is not constant on P (D cannot be constant, otherwise
a, b are not adjacent).

Summing equations (5) and using the affine representations for the questions yields

(αρa + ρb − γ)D = βa − αδa − δb

Because D is not a constant, we have γ = αρa + ρb.
Using the second equation (5) and substituting for γ, we further obtain

ρbu(a, ·) + αρau(a, ·) = −δb − l.

The right-hand side is affine. Hence, ρau(b, ·) cannot be affine, otherwise we would
get the contradiction with the left-hand side being a sum of affine and not affine
functions.

The other direction follows from flipping the roles of the two actions. □

The Lemmas shows that the following cases are exhaustive:
(1) X(a, ·) and X(b, ·) are not affine transformations of D: For sufficiently large

P , neither X(a, ·) nor X(b, ·) can be represented as a affine transformation of
D on P . The summation of equations (5) leads to

αX(a, p) +X(b, p) = γD(p) + βa.
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The hypothesis implies that α ̸= 0.
We will show that α is unique. Otherwise, there would be α′, γ′, β′ such

that
α′X(a, p) +X(b, p) = γ′D(p) + β′.

But then, a subtraction of the first equation from the second leads to a con-
tradiction with X(a, ·) not having a representation as affine transformation of
D.

Additionally, because D(p) is not constant, γ and β are also uniquely de-
termined for all sufficiently large P . Hence, for all p ∈ ∆u

αX(a, p)− βa − γu(a, p) = −X(b, p)− γu(b, p) = l(p),

which implies the thesis of Lemma 2.
(2) For each x = a, b, X(x, ·) is affine transformations of D with coefficients ρx, δx.

There are two subcases:
(a) Neither ρau(b, ·) and ρbu(a, ·) is affine: The proof of Lemma 11 shows

that
f(p) = ρbu(a, p) + αρau(b, p)

must affine, which implies that α ̸= 0 and it is uniquely determined. The
thesis of Lemma 2 follows from the following equations:

−αX(a, ·) + αδa + (ρb + αρa)u(a, ·) = f(p) = X(b, ·)− δb + (ρb + αρa)u(b, ·).

(b) ρau(b, ·) and ρbu(a, ·) are both affine: Then,

−X(a, ·) + δa + (ρb + ρa)u(a, ·) = ρbu(a, ·) + ρau(b, ·) = X(b, ·)− δb + (ρb + ρa)u(b, ·).

which shows that the thesis of Lemma 2 holds.

D.4. Case Ugeneral. We have a preliminary result:

Lemma 12. Fix finite subset P ⊆ ∆Θ. Then, there exist P -dependent constant
α, γ, βa, βb ∈ R such that, for each p ∈ P ,

αX(a, p) = βa + γu(a, p), (6)

X(b, p) = βb − γu(b, p).

Proof. For each finite subset P ⊆ ∆Θ, define UP = {µ ∈ U : µa(P ) = 1 for each a ∈
A1}. Let µ ∈ UP be an interior information structure such that Au(µ) = {a, b}. Let
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W be the (convex) set of information structures ψ such that

ψa · u(a, ·) = ψb · u(b, ·) and µa ·X(a, ·) = ψa ·X(a, ·).

Lemma 6 implies that

µb ·X(b, ·) = ψb ·X(b, ·) for any ψ ∈ W .

For all actions x, y ∈ A, let

g(x, p) = 1{x = a}u(a, p)− 1{x = b}u(b, p),

hy(x, p) = 1{x = y},

ky(x, p) = 1{x = y}X(y, p).

Define F = {g} ∪ ∪{hy : y ∈ A} and consider a (dual) linear subspace

W =

{
w ∈

(
RP

)A
: ∀f∈F∪{ka}

∑
x

wx · fx = 0

}
.

Then, W is the affine hull of the set {ψ − µ : ψ ∈ W}.
The above observation implies that, for each w ∈ W , it must be that

∑
xwx ·kbx = 0.

A standard linear algebra argument implies that kb ∈ span(F ∪ {ka}): there exist
constants γ, α,, and βy, for each y ∈ A1, such that

kb =
∑
y

βyhy + γg − αka.

This implies

0 = βa + γu(a, p)− αX(a, p),

X(b, p) = βb − γu(b, p).

The result follows. □

The second equation of (7) implies that, if u(x, ·) is a constant function, so isX(b, ·).
Because the roles of a, b can be reversed, the same observation applies to u(a, ·) and
X(a, ·).

Because actions a, b are adjacent, at least one of u(a, ·) or u(b, ·) is not a constant
function. To fix attention, assume w.l.o.g. that u(b, ·) is not a constant. The second
equation of (7) implies that, for sufficiently large P , γ, and hence βb are uniquely
defined and do not depend on P .
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If X(a, ·) and X(b, ·) are constant functions, the thesis of Lemma 2 is trivially
satisfied. For the rest of the discussion, we assume that at least one of the functions
is not constant. The equationes (6) imply that γ ̸= 0.

If u(a, ·) is not a constant function, then, it must be that α ̸= 0 is uniquely de-
termined and fixed for all sufficiently large P . The thesis of Lemma 2 immediately
follows from equations (6).

If u(a, ·) is a constant function, then we can replace βa from the first equation (6)
with βa′ = X(a, ·)− γu(a, ·). Then, X(a, ·) = βa′ + γu(a, ·). The thesis of Lemma 2
is trivially satisfied in this case.

Appendix E. Proof of Theorem 2

Suppose that a1 has nontrivial continuation. Then, u∗1(a1, p) is not affine in p. We
consider two cases:

First, suppose that X(a1, p) is affine in p. In such a case, the characterization in
Lemma 9 implies that the constant γ0 in equation (1) must be equal to γ0 = 0 and
that X(b1, p) is affine in p for each adjacent b1. An analogous argument extends the
claim to the entire graph G∗, and through equations (1), to the entire set of first-
period actions, including actions without nontrivial continuation. For each a1, define
X0(a1) ∈ RΘ as the unique vector such that X(a1, p) = p ·X0(a1).

For each edge a1 − b1 in graph G∗, equations (1) further imply that X0(a1) and
X0(b1) belong to span{1, fa1b1} for some fa1b1 ∈ RΘ. If b1 − c1 is another edge in G∗,
then it must be that fb1c1 ∈ span{1, fa1b1}. A repetition of the same argument from
the other side, shows that there exists f such that, for each edge e, fe ∈ span{1, f}.
It follows from equations (1) that it must be that fe is collinear with f for each edge
e of graph G∗. In particular, each question X(a1) is equivalent to affine question p ·f.
One more application of the equations extends this observation to actions without
nontrivial continuation.

Second, suppose that X(a1, p) is not affine in p. Then, we can assume that γ0 = 1

in equation (1). Because of the characterization from Lemma 9, if b1 is adjacent and
it has nontrivial continuation, it must be that X(b1, p) is also not affine in p. Hence,
this argument spreads throughout the entire graph G∗.

For each action a1 with nontrivial continuation, because X(a1) is non-affine and
γ0 = 1, there are unique α, β such that

αX(a1, p)− β − u∗1(a1, p)
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is affine in p. By the characterization from Lemma 9, the value of the above formula
does not depend on a1. Let f ∈ RΘ be the unique vector such that αX(a1, p)− β −
u∗1(a1, p) = p ·f . It follows that each question X(a1) is equivalent to u∗1(a1, p)+p ·f for
actions with nontrivial continuation. One more application of equations (1) extends
this fact to all actions.

Appendix F. Proof of Lemma 3

Suppose Y is equivalent to X and α(a1, a2), β(a1, a2) are the parameters from the
definition of equivalence. Suppose that (A1 × S1, A2 × R × S2, vX) is the elicitation
mechanism incentivizing X. Let

vY (a1, s1, a2, r, s2) = vX(a1, s1, a2,
r − β(a1, a2)

α(a1, a2)
, s2).

Then, (A1×S1, A2×R×S2, vY ) incentivizes Y . Indeed, the construction ensures that
• (a2, r, s2) ∈ AvY (a1, s1, p) is vY -optimal in the second period after actions
a1, s1 at beliefs p if and only if (a2, r−β(a1,a2)

α(a1,a2)
, s2) ∈ AvX (a1, s1, p) is vX-optimal.

Together with the fact that X is incentivized in the second period, the latter
implies that

r = α(a1, a2)EpX(a1, a2, ·) + β(a1, a2) = EpY (a1, a2, ·).

• Because the expected continuation payoffs after the first-period in vY problem
is identical to the payoffs in vX problem, the incentives in the first-period are
unchanged.

Appendix G. Proof of Theorem 3

As in the proof of Theorem 1, the construction of the payoffs in the elicitation
mechanism relies on BDM. Suppose that X(a1, a2, θ) = v(a2, θ), where Av

2(p) = Au
2(p)

for each p. Assume that xmin < X(a1, a2, θ) < xmax for each a1, a2, θ.
Construct an elicitation mechanism (A1, A2 × R, w) with payoffs:

w(a1, r, a2, θ) = u(a1, a2, θ) +
r − xmin

xmax − xmin
v(a2, θ) +

1

2

x2max − r2

xmax − xmin
. (7)

Given the first-period action a1, second-period beliefs p, and second-period action a2,
the optimal choice of r is r = Epv(a2, ·) = EpX(a2, ·). The expected payoffs in the
second period are equal to

Epu(a1, a2, ·) +
1

2(xmax − xmin)
(Epv(a2, ·)− xmin)

2 +
1

2
(xmax + xmin).
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Because the payoffs are separable and because of the choice of function v, the above
is maximized by a2 ∈ Au(a1, p) = Aw(p). Notice that the second and the third
component do not depend on action a1. Hence, given any first-period beliefs µ, the
optimal first-period choice must maximize the expectation of the first-component,
and hence a1 ∈ Au(µ).

It follows that (A1, A2 × R, w) incentivizes X.

Appendix H. Proof of Section 5.3

H.1. Preliminary results.

Lemma 13. Suppose that X is incentivizable in the second period. Then, for any
two pairs (a1, a2) and (b1, b2) such that a1 ̸= b1 are adjacent and the intersection of
belief sets P (a1, a2)∩ P (b1, b2) has nonempty interior, there are coefficients γ, β such
that, for each θ,

X(a1, a2, θ) = γX(b1, b2, θ) + β.

Proof. The proof follows the idea in the example. Take any actions a1, b1 ∈ A1, and
a2, b2 ∈ A2, such that a1 and a2 are adjacent and there exists an open set of beliefs
P ⊆ P (a1, a2) ∩ P (b1, b2) such that a2 ∈ Au(a1, p), b2 ∈ Au(b1, p) for each p ∈ P .
Then, the choice of belief set implies that the payoffs u∗1(a1, p) and u∗1(b1, p) as well
as the payoff difference u∗1(a1, p)− u∗1(b1, p) is affine in p ∈ P .

Suppose that EpX(a1, a2, θ) = EqX(a1, a2, θ) for some p, q ∈ P , but EpX(b1, b2, θ) ̸=
EqX(b1, b2, θ).

Take any nondistortionary expansion (A1 × S1, A2 × R× S2, v) and suppose that v
incentivizes X. Let v∗1(a1, p) = maxa2,r Epv(a1, (a2, r), θ) be the second-period value
of information of the expansion. Find supporting actions s1, t1 ∈ S1 such that (a1, s1)
and (b1, t1) are adjacent, and second-period supporting actions s2, t2 ∈ S2 and open
subset of beliefs Q ⊆ P such that p ∈ Q ⊆ P v(a1, s1, a2, s2) ∩ P v(b1, t1, b2, t2). If
q /∈ Q, then replace it by a belief along the interval between p and q that belongs to
Q.

Lemma 4 implies that the value function v∗1(a1, s1, αp + (1 − α)q) is affine over α
and v∗1(b1, t1, αp + (1 − α)q) is strictly convex over α. It follows that the difference
v∗1(b1, t1, αp+(1−α)q)−v∗1(a1, s1, αp+(1−α)q) is strictly convex in α. This leads to a
contradiction with Lemma 5. The contradiction shows that it must be EpX(b1, b2, θ) =

EqX(b1, b2, θ).
Because the above argument applies for any p, q in an open set of beliefs Q, we

conclude that, for any vector v ∈ RΘ such that v · 1 = 0, we have X(a1, a2, θ) · v = 0
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implies X(b1, b2, ·) · v = 0. A linear algebra argument implies that X(b1, b2, ·) ∈
span{X(a1, a2, ·), 1}. The claim follows. □

Lemma 14. Suppose X is incentivizable in the second period. Then, there is a
mapping y : P −→ RΘ such that for each pair of essential best responses a1, a2, there
are γ, β such that

X(a1, a2, θ) = γY (π(a1, a2), θ) + β.

The lemma says that each incentivizable question can be factorized through the
appropriate element of the join collection P .

Proof. Fix action a∗1. For each element of the join P ∈ P , choose action a2(P ) such
that P = π(a∗1, a2(P )). Define Y (P ) = X(a∗1, a2(P ), ·).

We construct a graph Gu as follows. The edges are pairs of essential best responses
(a1, a2). Any two pairs (a1, a2) and (b1, b2) are connected if a1 ̸= b1 are adjacent and
the intersection of belief sets P (a1, a2) ∩ P (b1, b2) has nonempty interior. Then, the
connected components of the graph Gu correspond to the elements of the partition
P .

Let A be the set of edges of Gu for which there is γ, β such that the thesis of the
lemma holds. Lemma 13 implies that if one pair belongs to A, then all connected
pairs belong to A as well. As a result, the entire connected components either belong
or not belong to A. At the same time, the definition of Y implies that each connected
component P has at least one pair (a∗1, a2(P )) ∈ A. The claim follows. □

H.2. Proof of Theorem 4. If payoffs are essentially separable, then P (a1, a2) =

P (b1, a2) for each a1, b1 ∈ A1 and a2 ∈ A2 and those sets are elements of the join.
Fix an action a∗1 and let Y (a2, θ) = X(a∗1, a2, θ). Then, question Y does not depend

on the first-period action. Moreover, the proof of Lemma 14 implies that X must be
equivalent to Y .

H.3. Proof of Theorem 5. We first show that, for generic payoffs, the join P is
trivial. We start with remarks about the elements of the join. Each of such elements
is a union of finitely many best response sets. The latter are convex sets bounded by
finitely many linear indifference spaces:

Ia1(a2, b2) = ({p : p · (u(a1, a2, ·)− u(a1, a2, ·)) = 0},
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which is the set of beliefs which make the DM indifferent between actions a2, b2 ∈ A2

after some first-period action a1 ∈ A1. Each of the indifference spaces is |Θ − 2|-
dimensional. As a result, each of the element of the join is a finite polytope enclosed
by |Θ− 2|-dimensional faces, which are subsets of the indifference spaces.

On the contrary, suppose that the join is non-trivial. Let π, π′ ∈ P are two adjacent
elements of the join: i.e., elements that share a |Θ− 2|-dimensional face F . Because
of the construction, F must belong to a indifference subspace for each first-period
action a1:

F ⊆
⋂
a1

⋃
a2 ̸=b2

Ia1(a2, b2). (8)

At the same time, if payoffs are generic, two first-period actions a1, b1 never lead
to identical indifference subspaces: for any two actions a2, a′2 and b2, b′2, vectors

u(a1, a2, ·)− u(a1, a
′
2, ·) ̸= u(b1, b2, ·)− u(b1, b

′
2, ·)

implies that the intersection of Ia1(a2, a′2) and Ib1(b2, b
′
2) has fewer than |Θ − 2| di-

mensions. It follows that the set on the right-hand side of (8) has fewer than |Θ− 2|
dimensions. We obtain a contradiction with the fact that F is |Θ − 2|-dimensional.
The contradiction shows that we cannot have two different elements in the join, hence,
it must be trivial.

The claim follows from Lemma 14.

Appendix I. Proof of Theorem 6

On the contrary, suppose that there exists a nondistortionary expansion (A1 ×
S1, A1 × R × S1, v) that incentivizes a non-constant question profile X in the second
period.

Let a1 be an essential best response and a2 be an essential best response after a1
such that X(a1, a2, ·) is not constant. Take a second-period interior belief p such
that a2 ∈ Au(a1; p). Let ψ be a first-period interior belief such that Au(ψ) = {a1}
and that assigns a strictly positive probability to belief p. Take any essential best
response b1 that is adjacent to a1 and let ψ′ be a belief at which b1 is the unique best
response. By taking a convex combination between ψ and any ψ′, we can find µ such
that Au(µ) = {a1, b1}, it assigns strictly positive probability ϵ := µa1(p) > 0 to p, and
such that in a neighborhood of µ, only actions a1 and b1 are best responses.

Find q, q′ such that p = 1
2
q + 1

2
q′ and EqX(a1, a2, ·) ̸= EpX(a1, a2, ·) (such beliefs

exist because X(a1, a2, ·) is not constant). We can find q, q′ close enough to p so that
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a2 remains a best response at both beliefs. It follows that u∗1(a1, ·) is affine over the
interval q and q′. At the same time, because v incentivizes question profile X, it
must be that v∗1(a1, s1, ·) is strictly convex over the interval between q and q′, and, in
particular,

v∗1(a1, x1, p) <
1

2
v∗1(a1, x1, q) +

1

2
v∗1(a1, x1, q

′). (9)

Define belief µ′ so that µ′(P ) = µ(P ) for each P ⊆ ∆Θ \ {p, q, q′} and

µ′
a1
(p) = 0,

µ′
a1
(q) = µa1(q) +

1

2
ϵ,

µ′
a1
(q′) = µa1(q

′) +
1

2
ϵ.

Notice that µ′ ∈ Uquality ⊆ U .
We have

Eµ′(a1)u
∗
1(a1, ·) = Eµ(a1)u

∗
1(a1, ·) +

(
1

2
(u∗1(a1, q) + u∗1(a1, q

′))− u∗1(a1, p)

)
ϵ

= Eµ(a1)u
∗
1(a1, ·)

= Eµ(b1)u
∗
1(b1, ·),

where the second equality comes from the fact that u∗1(a1;αp+(1−α)q) is affine over
α and the last equality is from the choice of µ. Hence, Au(µ′) = {a1, b1}. At the same
time, the expected payoff at µ′ is equal to

max
a′1,x

′
1

Eµ′(a1)v
∗
1(a

′
1, x

′
1, ·) ≥ Eµ′(a1)v

∗
1(a1, x1, ·)

= Eµ(a1)v
∗
1(a1, x1, ·) +

(
1

2
(v∗1(a1, x1, q) + v∗1(a1, x1, q

′))− v∗1(a1, x1, p)

)
ϵ

> Eµ(a1)v
∗
1(a1, x1, ·)

= Eµ(b1)v
∗
1(b1, y1, ·)

= max
b′1,y

′
1

Eµ′(b1)v
∗
1(b

′
1, y

′
1, ·),

where the inequality comes from (9) and the last equality follows from the choice of
beliefs µ and the fact that v is nondistortionary. Thus, b1 is not v-optimal at µ′ and,
because v is nondistortionary, b1 /∈ Au(µ′). A contradiction demonstrates the result.
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